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Introduction

e Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete nature of geometric problems as opposed
to continuous issues.

@ There are many areas in computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing (CAD), geographic information
systems (GIS), etc. that give rise to geometric problems.

o If one assumes Michael lan Shamos's thesis [Shamos M. |.,
1978] as the starting point, then this branch of study is
around forty years old.



@ Any problem that is to be solved using a digital computer has
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@ Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

@ For CG techniques to be applied to areas that involves
continuous issues, discrete approximations to continuous
curves or surfaces are needed.

@ CG algorithms suffer from the curse of degeneracies. So, we
would make certain simplifying assumptions at times like no
three points are collinear, no four points are cocircular, etc.

@ Programming in CG is a little difficult. Fortunately, libraries
like LEDA [LEDA, www.algorithmic-solutions.com] and CGAL
[CGAL, www.cgal.com] are now available. These libraries

implement various data structures and algorithms specific to
CG.
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Introduction

@ In this lecture, we touch upon a few simple topics for having a
glimpse of the area of computational geometry.

@ First we consider some geometric primitives, that is, problems
that arise frequently in computational geometry.

@ Then we study a few classical CG problems.
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Area Computation

Given a simple polygon P of n
vertices, compute its area.

Definition

A sinple polygon is the region of
a plane bounded by a finite
collection of line segments
forming a simple closed curve.

o Let us first solve the
problem for convex polygon.
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Area Computation

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n — 2
triangles and then find the area.

Area of a simple polygon
We can do likewise.




Area Computation

If P be a simple polygon with n vertices with coordinates of the
vertex p; being (x;, y;), 1 < i < n, then twice the area of P is given
by

n

2A(P) =) (xiyit1 — yixis1)

i=1
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Polygon Triangulation

Any simple polygon can be triangulated.

A simple polygon can be triangulated into (n — 2) triangles by
(n — 3) non-crossing diagonals.

The proof is by induction on n. O

Time complexity

We can triangulate P by a very complicated O(n) time algorithm
[Chazelle B., 1991] OR by a more or less simple O(nlog n) time
algorithm [Berg M. d. et. al., 1997].
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Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point g, is
qge P?

What if P is a triangle?

@ Can be done in O(1)time. What if P is an arbitrary simple
polygon?
What if P is convex? e Can be done in O(n)time.

@ Can be done in O(n)time.

@ Takes a little effort to do it
in O(log n) time. Left as an
exercise.
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Point Inclusion: Another ldea

For convex polygon

Walk around the polygon and
compute total angle subtended at
q. Time complexity is O(n).

For arbitrary simple polygon
Same result holds for arbitrary

S mple pOIygon also. Total angular turn around ¢ is 27 if ¢ € P,
else, 0

A
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number of crossings with
edges of P. If it is odd, then
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Point Inclusion: Still another Idea

Ray Shooting

@ Shoot a ray and count the
number of crossings with
edges of P. If it is odd, then
g € P. If it is even, then

q¢P.
o Time complexity is O(n).

@ Some degenerate cases need
to be taken care of.
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set containing P.
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Definitions

A set S C R? is convex if for any I-’I(ull edge
two points p,q € S, pg € S.

Hull vertex
~
Definition

Let P be a set of points in R2.
Convex hull of P, denoted by

CH(P), is the smallest convex
set containing P.

A




Convex Hull Problem

Problem

Given a set of points P in the plane, compute the convex hull
CH(P) of the set P.




A Naive Algorithm
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A Naive Algorithm

o Consider all line segments
determined by () = O(n?)
pairs of points.

o If a line segment has all the
other n — 2 points on one
side of it, then it is a hull
edge.

@ We need

(5)(n—2) = O(n?) time.




Towards a Better Algorithm

How much betterment is possible?

@ Better characterizations lead to better algorithms.




Towards a Better Algorithm

How much betterment is possible?

@ Better characterizations lead to better algorithms.

@ How much better can we make?




Towards a Better Algorithm

How much betterment is possible?

@ Better characterizations lead to better algorithms.

@ How much better can we make?

@ Leads to the notion of lower bound of a problem.




Towards a Better Algorithm

How much betterment is possible?

@ Better characterizations lead to better algorithms.
@ How much better can we make?
@ Leads to the notion of lower bound of a problem.

@ The problem of Convex Hull has a lower bound of Q(nlog n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Q(nlog n).




Optimal Algorithms

e Grahams scan, time complexity O(nlogn)
(Graham, R.L., 1972).

e Divide and conquer algorithm, time complexity O(nlogn)
(Preparata, F. P. and Hong, S. J., 1977).

@ Jarvis's march or gift wrapping algorithm, time complexity
O(nh) where h is the number of vertices of the convex hull.
(Jarvis, R. A., 1973)

@ Most efficient algorithm to date is based on the idea of
Jarvis's march, time complexity O(nlogh)
(T. M. Chan, 1996).
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Definitions

A better characterization

@ Consider a walk in clockwise direction on
the vertices of a closed polygon.

@ Only for a convex polygon, we will make a

. hull
right turn always. Hbper it
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that bound the convex hull from above.




Definitions

A better characterization

@ Consider a walk in clockwise direction on
the vertices of a closed polygon.

@ Only for a convex polygon, we will make a

. hull
right turn always. Hbper it

/}7;<”.\
/o’ e
@ Insert points in P one by one and update P ’( .
the solution at each step. e e

lower hull

@ We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

@ The lower hull can be computed in a
similar fashion.
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Sort P according to x-coordinate to generate
a sequence of points pl[1], p[2], ..., plnl;
Insert p[1] and then p[2] in a list L_U;
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The pseudocode

Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
a sequence of points pl[1], p[2], ..., plnl;
Insert p[1] and then p[2] in a list L_U;
for i = 3 ton {
Append pl[i] to L_U;
while(L_U contains more than two points AND
the last three points in L_U
do not make a right turn) {
Delete the middle of the last
three points from L_U;
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Analysis

Time complexity

@ Sorting takes time O(nlog n).
@ The for loop is executed O(n) times.

@ For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(nlog n).
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Art Gallery Problem

The problem

Given a simple polygon P of n vertices,
find the minimum number of cameras that
can guard P.

The problem is NP-Hard. L

Simplified version A

Can we find, as a function of n, the number
of cameras that suffices to guard P?

What if P is convex?
@ Only one camera is required.
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Art Gallery Problem

Easy solution

@ Recall P can be triangulated

into n — 2 triangles. Place a /\

guard in each triangle.

@ Or place guards at vertices of
the triangulation 7 of P.

@ We get an O(n) bound on the
number of guards.
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Art Gallery Problem

Can the bound be reduced?

@ We do a 3-coloring of the
vertices of 7. Each triangle of
T has a blue, gray and white
vertex.

@ Choose the smallest color class
to guard P.

@ Hence, | 3| guards suffice.

o But, does a 3-coloring always
exist?
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Art Gallery Problem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

@ Consider the dual graph G5 of
T of P.
@ G is a tree as P has no holes.

@ Do a DFS on G to obtain the
coloring.

@ Place guards at those vertices
that have color of the minimum
color class. Hence, | 3] guards
are sufficient to guard P.




Art Gallery Problem

Are | 3| guards sometimes necessary?




Art Gallery Problem

Are || guards sometimes necessary?

L%J prongs




Art Gallery Theorem

For a simple polygon with n vertices, | 2| cameras are always
sufficient and occasionally necessary to have every point in the
polygon visible from at least one of the cameras.
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